¹⁹F-¹⁹F COUPLING CONSTANTS IN THE AZOLE SERIES. SYNTHESIS OF 3,4-, 4,5-, AND 3,5-DIFLUOROPYRAZOLES¹

Francesc Fabra, Empar Fos, and Jaume Vilarrasa* Departamento de Química Orgánica, Facultad de Química, Barcelona-28 (Spain)

<u>Summary</u>: Stepwise syntheses of difluoroazoles $\underline{1}$, $\underline{2}$, and $\underline{3}$ have been performed. The JFF coupling constants are reported for the first time. Surprisingly, no coupling between F₄ and F₅ is observed.

Since the development of some suitable methods for attaching a fluorine atom to an azole ring,^{2,3} several fluoroazoles have been prepared. However, despite the fact that polyfluorinated six-membered nitrogen heterocycles are well known,⁴ no ring-di(or tri)fluorinated azole has been reported yet.

In order to evaluate all the possible ${}^{3}J_{FF}$ and ${}^{4}J_{FF}$ which may appear in the pyrazole nucleus we have synthesized compounds $\underline{1}$, $\underline{2}$, and $\underline{3}$: their ${}^{19}F-{}^{19}F$ coupling constants and ${}^{19}F$ chemical shifts⁵ are summarized below.

	F >	9Hz F N R <u>1</u>	$ \begin{array}{c} F \\ N \\ R \\ \underline{2} \end{array} $				F N N R <u>3</u> J~5.5Hz			
			a, R = H	ь, R	t = Me	c, R = Ac				
	<u>la</u> 6	<u>1b</u>	<u>lc</u>	<u>2b</u>		<u>3a</u>	<u>3b</u>	<u>3c</u>		
F3	65.0	63.6	53.5	F_4	108.8	F3	44.5	43.4	36.4	
F4	111.0	109.1	101.0	F_5	67.1	F ₅	44.5	48.1	36.7	

Chemical shifts (¹H and ¹⁹F) and ¹H-¹⁹F coupling constants⁷ agree well with those previously observed in N-substituted 3-, 4-, and 5-fluoropyrazoles,¹ the most noteworthy effect caused by the introduction of a "new" fluorine atom being an upfield shift of <u>ca</u>. 10 ppm of the "first" fluorine, when both are found in an <u>orto</u> relative position, and a downfield shift of <u>ca</u>. 10 ppm too, when the halogens are found in <u>meta</u>, but this general trend could be expected on the basis of the π -donor and σ -withdrawing character of the fluorine as substituent. Nevertheless, regarding to ¹⁹F-¹⁹F coupling

constants, it is remarkable that in $\underline{2}$ the fluorine nuclei are not coupled to each other, a fact that is very surprising since in the pyrazole ring: (a) $J_{H_4H_5}$ is always slightly greater than $J_{H_3H_4}$, (b) $J_{H_4F_3}$ $J_{H_4F_5}$ and $J_{H_3F_4}$ $J_{H_5F_4}$, and (c) there is no doubt about the magnetic non-equivalence of the two fluorines (they lie 40 ppm apart!).⁸

3,4-Difluoropyrazole $(\underline{1a})^6$ was synthesized in eight steps from 3(5)-aminopyrazole, which was first converted to its 4-nitro derivative by means of the usual acetylation-nitration-deacetylation sequence. The photochemical irradiation (H.P. mercury lamp, without filter, 30 h, r.t.) of the corresponding diazonium salt in HBF₄^{1,2} afforded 3(5)-fluoro-4-nitropyrazole in 53% yield. The catalytic hydrogenation (Pd/C, 4 atm) of this compound gave almost quantitatively the amine, which yielded $\underline{1a}$ (7%, mp = 67-69°, M^+ = 104) by diazotization and irradiation in HBF₄ at -20°. The treatment of $\underline{1a}$ with CH₂N₂ in presence of BF₃ gave $\underline{1b}$.⁹ On the other hand, the methylation of $\underline{1a}$ with Me₂SO₄ at 40°, without solvent, gave only $\underline{2b}$.⁹ Acetylation of $\underline{1a}$ yielded a single product, to which the structure $\underline{1c}$ must be assigned on the basis of the paramagnetic shift observed by its proton.

The starting material for the synthesis of $\underline{3a}$ was again 3(5)-aminopyrazole, from which we prepared 3(5)-fluoropyrazole. This compound was treated with AcONO₂ yielding 3-fluoro-1-nitropyrazole, which was rearranged¹⁰ to 3(5)-fluoro-5(3)-nitropyrazole. Catalytic reduction, followed by diazotization and irradiation, as above, gave a 6% yield of 3,5-difluoropyrazole ($\underline{3a}$). The methylation of a sample of $\underline{3a}$ with CH₂N₂ afforded $\underline{3b}$, whereas the acetylation with Ac₂O in CH₂Cl₂ gave $\underline{3c}$.

<u>Acknowledgements</u>. We thank Dr. J. Coll for the ¹⁹F-Nmr spectra. A fellowship from the "Ministerio de Educación y Ciencia" to one of us (F. F.) is also acknoledged.

REFERENCES AND NOTES

- Fluoroazoles-IV. Precedent paper: F. Fabra, J. Vilarrasa, and J. Coll, <u>J. Heterocyclic Chem.</u>, <u>15</u>, 1447 (1978).
- 2. K. L. Kirk and L. A. Cohen, J. Am. Chem. Soc., <u>93</u>, 3060 (1971); ibid., <u>95</u>, 4619 (1973).
- 3. R. Naik, J. T. Witkowski, and R. K. Robins, J. Org. Chem., <u>38</u>, 4353 (1973).
- 4. See, for instance, R. D. Chambers, "Fluorine in Organic Chemistry", Wiley, New York, 1973.
- 5. In ppm, with TFA as external reference (positive values upfield), and in CDC13 as solvent.
- The available data, namely J_{FF} = 8.5 Hz, indicate that this tautomer predominates in the <u>la</u> ≠ <u>2a</u> equilibrium.
- 7. For the sake of simplicity, δH and J_{HF} are omitted here.
- Work is in progress to synthesize other 4,5-difluoropyrazoles and, namely, 3,4,5-trifluoropyrazole, in order to check whether their JF_{4F5} are near zero too.
- The structure of this compound has been firmly established by comparison of its Nmr spectra with those of 3-fluoro-1-methylpyrazole and 5-fluoro-1-methylpyrazole of unambiguous structure.¹
- 10. J. W. Janssen, C. L. Habraken, and R. Louw, J. Org. Chem., <u>41</u>, 1758 (1976), and ref. therein.

(Redeived in UK 12 June 1979)